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Abstract—Large Language Models (LLMs) have showcased
remarkable generalizability in language comprehension and hold
significant potential to revolutionize human-computer interaction
in smart homes. Existing LLM-based smart home assistants
typically transmit user commands, along with user profiles and
home configurations, to remote servers to obtain personalized
services. However, users are increasingly concerned about the
potential privacy leaks to the remote servers. To address this is-
sue, we develop HomeLLaMA, an on-device assistant for privacy-
preserving and personalized smart home serving with a tailored
small language model (SLM). HomeLLaMA learns from cloud
LLMs to deliver satisfactory responses and enable user-friendly
interactions. Once deployed, HomeLLaMA facilitates proactive
interactions by continuously updating local SLMs and user
profiles. To further enhance user interaction while protecting
their privacy, we develop PrivShield to offer an optional, privacy-
preserving LLM-based smart home service for users who are
unsatisfied with local responses and are willing to send less-
sensitive queries to remote servers. For evaluation, we develop a
comprehensive benchmark, DevFinder, to assess service quality.
Extensive experiments and user studies (M = 100) demonstrate
that HomeLLaMA can provide personalized services while signif-
icantly enhancing user privacy.

Index Terms—Smart Home, Large Language Model, Privacy,
Personalization

I. Introduction

THE proliferation of smart homes has significantly facili-
tated the development of intelligent living spaces [1], [2].

Typically, a smart home is a residence equipped with various
interconnected devices and systems [3], [1], [4] that can be
controlled remotely or autonomously to enhance efficiency and
convenience through technologies such as IoT and AI-based
chatbots [5], [6]. The long-term goal of smart homes is to
achieve seamless user-assistant interaction, allowing systems
to deeply comprehend user intents and deliver satisfactory and
personalized responses [7].

Existing commercial-off-the-shelf (COTS) smart home as-
sistants, like Amazon Alexa [8] and Apple Siri [9], are task-
specific models pretrained on various instruction datasets,
which may lead to degraded performance on unseen tasks.
For instance, when users provide an under-specified command
(e.g., “Let guests in”) without mentioning specific devices,
the system might struggle to generate a reasonable action
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plan involving smart devices due to the lack of a predefined
command. Consequently, users and developers must add new
command-action pairs manually to customize the assistant.
The configuration process [10] mainly involves setting up
triggers (e.g., specific times and conditions) and defining
corresponding actions (e.g., starting appliances and predefined
routines), which are complex and time-consuming for appli-
cation developers, let alone novice users.

To overcome these limitations, recent works integrate LLMs
[11], [12] to revolutionize smart home services, enabling assis-
tants to understand user intents beyond predefined commands.
Among them, Sasha leverages ChatGPT [13] to generate
action plans in response to user commands. SAGE further
enhances user experience by storing conversation histories for
personalized plan generation. Nevertheless, these cloud LLM-
based assistants introduce substantial privacy risks. In practice,
users typically need to register for API keys to access the cloud
LLM services. During operation, user commands, constructed
profiles, and home device states (e.g., on/off state of lights)
are transmitted to the cloud for processing. Under the honest-
but-curious threat model [14], [?], [15], [10], this workflow
may expose user privacy [16], [17], including daily routines
(e.g., cooking, exercising), personal preferences, and detailed
home configurations, to third parties.

To protect user privacy from being exposed, an alternative
approach is to exploit open-source models to serve smart
homes locally. Though promising, local devices can only
support small-sized language models (SLMs) due to resource
constraints. [18], [19], [20] Our preliminary study (§ III-B)
reveals that SLMs often fall short in fully comprehending user
intents [21]. Therefore, users are facing a performance-privacy
dilemma: while cloud LLMs excel in delivering high-quality
services, they may raise privacy concerns; conversely, local
SLMs secure user privacy but fail to generate satisfactory
responses due to limited model capabilities.

To address this dilemma, we propose HomeLLaMA, a
privacy-preserving local home assistant that delivers personal-
ized and satisfactory services through continuous learning. The
key insight of HomeLLaMA is empowering local SLMs with
the capabilities of cloud LLMs to shift most privacy-sensitive
query processing tasks from the cloud to the local, thereby
achieving a balance between model performance and user
privacy. The powerful cloud services are consulted with users’
explicit approval only when necessary (e.g., unsatisfactory
responses of the local SLMs). While the basic idea is simple,
several technical challenges must be addressed.

• SLMs perform poorly compared to LLMs and lack high-
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quality datasets for effective enhancement.
Preliminary experiments (§ III-B) reveal that the key bot-

tleneck of SLMs in delivering high-quality smart home plans
lies in their limited capabilities to accurately associate relevant
devices with user commands compared with cloud LLMs. Yet
further experiments show that directly tuning SLMs on existing
command-action pairs only yields slight performance gains
due to inadequate generalizability across heterogeneous home
configurations. To address it, we propose a novel labor-free
data augmentation method with a tailored inference paradigm.
Specifically, we instruct powerful cloud LLMs to synthesize
a generalizable command-device dataset based on available
crowdsourced data. We fine-tune local SLMs on such a syn-
thesized dataset and guide them using the consistent inference
pipeline with well-crafted prompts. As a result, the fine-tuned
local SLMs can effectively generate higher-quality action plans
that are applicable across diverse homes with varied device
configurations.

• Even a well-enhanced SLM may not consistently provide
cloud LLM-level services for users.

As shown in the preliminary results (Fig. 2(b)), even af-
ter fine-tuning with our well-constructed dataset, there still
remains a substantial performance gap between the local
SLM and the cloud LLM. This gap in serving smart homes
may undermine user experience, limited by local SLMs. To
resolve this issue, we design a privacy-preserving local-cloud
collaboration paradigm, providing users with the option to
consult cloud assistance for higher-quality responses. During
this collaboration, HomeLLaMA retains user preference and
home configuration data locally, and further obfuscates the
commands sent for assistance to preserve user privacy. The
process is entirely user-driven, meaning that the privacy-
sensitive commands will only be processed and then trans-
mitted to remote servers for performance enhancement upon
explicit user approval.

• Limited local space for guaranteeing long-term person-
alized services.

Prior work [22] embeds entire historical user-assistant con-
versations into prompts for personalization. However, open-
source SLMs have a shorter context length (e.g., 8K tokens
for LLaMA3) than commercial models and cannot incorporate
long conversation histories into prompts. While the popu-
lar retrieval-augmented generation (RAG) [23] is promising
in reducing context length by fetching relevant information
from a database, merely storing all historical conversations
in the database can lead to the continuous accumulation of
preference-related data, resulting in redundancy and hindering
the efficient retrieval of highly correlated information. To
mitigate this, at the end of each conversation, we instruct the
local SLM to distill the current chat into a concise user profile
containing topics, preferences, the current command, and its
final approved plan. Following the digestion of historical data,
we design a dynamic profile updating mechanism based on
similarity to reduce redundancy.

We implement and deploy HomeLLaMA on a local server
concerning specific smart home layouts and evaluate its per-
formance across multiple commonly used scenarios (e.g.,

atmosphere adjustment, and energy management). Both quan-
titative experiments and sufficient user studies (M = 100)
reveal HomeLLaMA significantly enhances user-centered pri-
vacy while maintaining an acceptable level of performance,
alleviating the raised performance-privacy dilemma for smart
home users. In short, the contributions are as follows:
• To the best of our knowledge, HomeLLaMA1 is the first on-

device smart home assistant to support privacy-preserving
and personalized services via user-in-the-loop.

• HomeLLaMA2 features three novel technical modules: Local
SLM Enhancement for effectively enhancing the perfor-
mance of local assistants with a tailored inference paradigm,
Local-Cloud Collaboration for maximizing user experience
via a user-centered local-cloud collaborative workflow with
privacy considerations, and User Preference Learning for
efficient locally-hosted personalization.

• We build a comprehensive benchmark DevFinder3 to quanti-
tatively evaluate the performance of smart assistants. Exten-
sive experiments and user studies demonstrate HomeLLaMA
offers satisfactory and privacy-enhanced services.

II. Related Work

A. Smart Homes

In recent years, smart homes have emerged as a significant
area of interest within the broader domain of Internet of Things
(IoT) [26]. These systems integrate various connected devices
to automate and enhance home living, offering functionalities
such as energy management [1] and personalized services
[27]. A typical scenario contains several smart devices, a
user interface component, and a central processing unit that
connects the smart home with cloud servers [28]. On the
smart device side, recent research has focused on enhancing
device capabilities through machine learning algorithms. For
instance, [29] explores activity recognition for home automa-
tion by developing a deep learning algorithm that identifies
user activities based on accelerometer data collected by de-
vices. On the user interface side, voice-based assistants are
increasingly preferred due to their ability to facilitate natu-
ral language interactions and hands-free control. Commercial
products like Google Assistant [30], and Alexa [8] exemplify
this trend, offering intuitive interfaces capable of managing
various commands, such as shopping and setting reminders, to
streamline automated device control. However, these modern
home assistants usually struggle with implicit and complex
commands [31], as demonstrated in our preliminary study. To
address this issue, traditional methods design tailored machine
learning frameworks to learn user preferences and adapt to
heterogeneous smart homes [32], [33], [34]. However, they
still require specialized fine-tuning or other adjustments when
deployed in unseen scenarios with data domain shifts. On the
other hand, recent advances in LLMs have shown excellent
performance in open-vocabulary question answering, which
can better comprehend user intentions with under-specified

1The trained model: https://huggingface.co/USER9724/HomeLlama-8B.
2The code: https://github.com/unixyhuang/homellama.
3https://huggingface.co/datasets/USER9724/SmartHome-Device-QA
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TABLE I
A comprehensive comparison with other LLM-based assistants.

System Base Model Plan Quality Personalization Privacy Protection User Engagement

HomeGPT [24] GPT-3.5 (Cloud) Medium Limited Low Limited
Sasha [7] GPT-4 (Cloud) High Limited Low Limited

SAGE [22] GPT-4 (Cloud) High High Low Limited
TT-Gemma [25] Gemma (Local) Low Limited High Limited
TT-Phi-2 [25] Phi-2 (Local) Low Limited High Limited
HomeLLaMA LLaMA3 (Local) Medium High High ↑ Proactive

Today’s party begins and 
let the guests in!

Sorry, I don’t understand 
what you mean. Here are 
some of the search results 
from the Internet which 
may be useful:
- Upcoming events in …

(a) A typical example of Siri.

User 
Commands

Device
States

User 
Profiles

U
p
lo
a
d

Cloud LLM

(b) General workflow of SOTA.

Fig. 1. Illustrations of existing works.

commands. HomeLLaMA enhances user experiences with im-
proved system performance by integrating LLMs with smart
home devices to overcome the aforementioned challenges.

B. Integrate LLMs with Smart Homes
Recognizing the strong generalizability and language pro-

cessing capabilities of LLMs [35], [36], [37], researchers are
attempting to integrate them with smart homes for enhanced
user experiences. A pioneering work, HomeGPT [24], directly
prompts LLMs to generate a series of routines for the smart
devices by providing the user command with detailed device
states. The routines will further be parsed to adjust the states of
the smart devices accordingly. Sasha [7] further optimizes the
inference and control procedures by dividing the entire pro-
cess into five steps: clarifying, filtering, planning, execution,
and feedback. Nonetheless, it cannot adapt to user habits to
generate personalized action plans, lowering long-term user
satisfaction. To address this, SAGE [22] and Jordan et al.
[38] enable LLMs to incorporate user profiles for generating
personalized plans. However, these systems transmit user data
and smart home configurations to the cloud LLM for process-
ing, raising privacy concerns for users as the data exits the
local environment. To provide satisfactory and personalized
plans while enhancing privacy, HomeLLaMA tailors a locally
deployed SLM via fine-tuning, focusing on providing satisfac-
tory and personalized smart home plans while enhancing user
privacy through our designed PrivShield.

In summary, Table I qualitatively presents a comprehen-
sive comparison between HomeLLaMA and other LLM-based
smart home assistants across multiple dimensions. Each of
these dimensions corresponds to specific quantitative metrics
discussed in the evaluation section (§ VI), for example, plan

quality is measured using the defined Device Relevance Score.
Compared with cloud-based assistants, HomeLLaMA offers
personalized services while significantly enhancing user pri-
vacy with minimal performance trade-offs. On the other hand,
compared with local-based solutions, HomeLLaMA excels in
providing superior personalization and higher-quality plans.
Additionally, it favors an innovative interaction paradigm that
promotes proactive user engagement through a user-driven
user-assistant interaction chain, enabling users to actively
personalize responses for a more adaptive experience.

C. Privacy-Preserving LLM Services
As LLM-based services become increasingly integrated into

various workplaces, they also raise significant privacy con-
cerns [39] due to the transmission of sensitive user queries to
remote servers for processing. To address these concerns, be-
yond computationally intensive encryption techniques such as
homomorphic encryption [40], several approaches have been
proposed to sanitize user prompts. For instance, Cape [41]
employs differential privacy to perturb transmitted prompts,
thereby protecting users’ personal attributes (e.g., gender, age)
from inference by cloud-based adversaries; InferGPT [42]
replaces identified sensitive information with alternative con-
tent to sanitize prompts; and GPTWall [43] utilizes an edge-
deployed LLM to enable users to customize their privacy pref-
erences. However, these methods primarily target general-use
scenarios and focus on safeguarding user attributes or identity
information. In contrast, home-related applications represent
a particularly privacy-sensitive domain where general-purpose
privacy-preserving techniques may prove inadequate.

In contrast, HomeLLaMA introduces a tailored privacy-
preserving framework specifically designed for LLM-based
smart home services. At its core, HomeLLaMA leverages an
enhanced local SLM to process and store the majority of user
information locally. Additionally, when explicitly authorized
by users, it employs an obfuscation-based technique to rewrite
and obscure user queries, offering an extra layer of privacy
protection that safeguards real-time in-home activities beyond
what general privacy-preserving approaches typically provide.

III. Motivation and Challenges
A. Limitations of Existing Smart Home Assistants

Existing solutions for smart assistants can be categorized
into task-based and LLM-based assistants. Task-based assis-
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I feel sleepy, but I must finish homework now. The following 
are the home supported available devices {……}.

Set the study lights to bright white, turn off the TV and 
music player, adjust air conditioners for comfort, and 
prepare a hot coffee using the coffee machine.

Brighten the lights of the study area and then set the music 
player to play in a moderate volume.

(a) Responses from GPT-4 and LLaMA3 give a command.
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(b) Average DRS results across multiple scenarios.

Fig. 2. Preliminary results of (a) responses from GPT-4 and LLaMA3 and (b) DRS after setting GPT-4 as references.

tants are trained on predefined command-action pairs, while
LLM-based assistants utilize the robust capabilities of LLMs
to understand user intents in various smart home scenarios.
Limitations of existing task-based assistants. As a notable
task-based assistant trained on a vast human-annotated dataset,
Siri can deliver excellent responses to predefined tasks [9].
However, its performance degrades when encountering unseen
and complex commands. Fig. 1(a) illustrates a typical failure
scenario in a conversation between Apple Siri and a smart
home user. When the user inputs a command such as ”Party
begins and let all the guests in!” Siri fails to provide an
appropriate response and instead directly returns the search
results from the Internet, leading to a poor user experience.
Privacy concerns of LLM-based assistants. Recent advance-
ments in LLM-based smart home assistants, such as Sasha
and SAGE, allow users to issue commands more freely and
receive responses that go beyond predefined tasks. Specifically,
Sasha prompts the LLM using a designed pipeline with steps
like clarifying, filtering, and planning to generate satisfactory
action plans in response to user commands. Sasha fails to pro-
vide personalized services. On the other hand, SAGE further
enhances personalization by storing conversation histories and
summarizing them into user profiles.

Despite the improvements, as illustrated in Fig. 1(b), this
workflow may pose significant risks to user privacy. In prac-
tice, users are required to transmit commands along with
constructed user profiles and detailed device states (e.g., a
JSON file indicating the status of an air conditioner) to cloud
servers for processing. Assuming an honest-but-curious cloud
adversary [14], this workflow may lead to the exposure of:
• Sensitive personal information, including personally identi-

fiable information (PII) and user preferences [44];
• Home configurations, e.g., real-time home device states [45];
• Users’ daily in-home activities/routines, e.g., exercising [46].
These privacy risks hinder existing LLM-based assistants.

B. Challenges
As a straightforward solution to mitigate privacy concerns

of existing LLM-based assistants, we conduct preliminary
experiments by deploying the open-source LLaMA3-8B [47]
on a local server. From the preliminary study, we report several
technical challenges that further inspire HomeLLaMA.
Challenge 1: Vanilla SLMs perform poorly in identifying
relevant devices and lack high-quality datasets for effective
fine-tuning. To first uncover the underlying reasons why SLMs
underperform LLMs in smart homes qualitatively, we input

an under-specified command along with a set of available
devices to both GPT-4 and LLaMA3 to generate responses.
As shown in Fig. 2(a), GPT-4 involves a comprehensive list
of relevant devices, whereas LLaMA3 generates a simpler
response, mentioning only lights and the music player. The
result suggests that SLMs mainly lack the inherent capability
and domain knowledge in identifying the latent semantic
correlation between user commands and relevant devices.

Given this observation, a user-configured dataset from smart
home platforms [48] is then collected for fine-tuning the SLM.
Once tuned, we input the prepared test commands into both
the original and the fine-tuned SLM in the same prompt
format, generating two sets of relevant devices as responses.
For a fair comparison, the same test commands are also
processed using GPT-4 to produce reference device outputs.
All responses are generated based on a predefined device
set, thereby constraining the models from generating outputs
in a freestyle manner. To quantify each model’s ability to
associate relevant devices with input commands, we adopt the
device relevance score (DRS) defined in [7], with a detailed
metric definition provided in § VI. As shown in Fig. 2(b),
the comparison reveals that DRS values only exhibit a slight
improvement (less than 10%) across various scenarios after
tuning on the dataset. The minimal performance gain from the
existing crowd-sourced dataset drives us to construct a high-
quality dataset tailored for fine-tuning SLMs in smart homes.
Challenge 2: Even a well-enhanced SLM may not consis-
tently generate cloud LLM-level responses. We explore po-
tential strategies to address Challenge 1 and finally construct
a fit-for-purpose dataset for effectively enhancing SLMs in the
context of smart homes (§ IV-B). However, as demonstrated
in Fig. 2(b), although fine-tuning SLMs with our tailored
dataset significantly improves performance, a gap still remains
between local SLMs and cloud LLMs. In practice, this im-
plies that even with enhancement, SLMs may still fail to
consistently deliver high-quality services to users in smart
home environments. Such inconsistencies can diminish the
user experience, particularly when compared to the robust
cloud-based assistants. The gap highlights the need for a
user-driven cloud-assisted mechanism—one that incorporates
privacy-preserving measures—enabling users to obtain higher-
quality responses when local outputs fail to meet expectations.
Challenge 3: Simply storing all interaction history for
personalization necessitates an excessively long context.
Existing approaches [22] directly incorporate raw conversation
history or accumulated user profiles into prompts for cloud
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Fig. 3. System overview of HomeLLaMA. The system begins with an offline stage to enhance service quality within smart homes. Once deployed, it enters
the online stage, where it continuously learns and updates user profiles in real time, with optional cloud assistance upon user request.

LLMs to enhance personalization. However, applying this
method to local SLMs faces a unique challenge: local SLMs
have a much shorter context length (e.g., only 8K tokens for
LLaMA3), making it infeasible to include lengthy user profiles
in prompts. While the widely adopted retrieval-augmented
generation (RAG) method [23] presents a promising solution
for conserving context length by retrieving relevant infor-
mation from a local database, its long-term use in smart
homes may lead to the continuous accumulation of preference-
related files. This accumulation can result in increased data
redundancy over time, thereby hindering the effective retrieval
of highly correlated information. This practical limitation
necessitates innovative solutions to optimize the utilization of
historical data.

IV. Design of HomeLLaMA
A. System Overview

To address the aforementioned challenges, we propose
HomeLLaMA, with an overview outlined in Fig. 3. Before
deployment, it begins with the offline Local SLM Enhancement
module (§ IV-B) and with the enhanced model, user commands
are further processed through the online stage, consisting of
the Multi-party Interaction module (§ IV-C) and the User
Preference Learning module (§ IV-D).
• Local SLM Enhancement enables the local SLM to gener-

ate plans for various user commands. Before deploying the
local assistant, it is necessary to enhance the SLM so that
it can identify relevant devices based on user commands.
We begin by selecting seed commands from an open-source
command-action dataset, covering various scenarios such as
lighting, environment control, and security [48]. We then
propose a tailored data augmentation method by feeding
seed commands into a cloud LLM (GPT-4) to generate new
commands, incorporating different expression styles (user
diversity) and scenarios (application diversity). This process
synthesizes a large set of user commands. Then, the teacher
LLM labels the commands with comprehensive relevant
devices and compiles them into an augmented dataset, which
is further used to fine-tune the local SLM.

• Multi-party Interaction further enhances the user experi-
ence in the loop of user-assistant-cloud interactions. Users
can interact with HomeLLaMA by freely expressing their
requirements ( 1O). If the response generated by HomeLLaMA

falls short of expectations, users can give feedback or allow
the local assistant to seek advice from cloud LLMs ( 2O). To
enhance user privacy, PrivShield obfuscates user commands
by blending them with adversarial commands generated by
the SLM before sending the mixture to a cloud-based LLM
for processing ( 3O). The cloud LLM, upon receiving these
mixed queries, generates a set of responses and returns them
to the local PrivShield ( 4O). The real response corresponding
to the original user command is then identified and recovered
as advice, which the SLM integrates to provide users with
a refined action plan ( 5O).

• User Preference Learning ensures the assistant continu-
ously learns and adapts to user preferences. Specifically,
HomeLLaMA records each user-assistant interaction, which
is then digested into structured user profiles with a prede-
fined format ( 6O). And the maintenance of user profiles will
dynamically update based on profile similarity. The module
allows the assistant to retrieve user profiles to generate
personalized plans for similar commands in the future ( 7O).
Over time, with the accumulated user profiles, HomeLLaMA
becomes increasingly attuned to user preferences.

B. Local SLM Enhancement
To improve SLMs in smart homes, a viable approach is to

apply supervised fine-tuning (SFT) [47] on a tailored dataset
mapping ”user command → relevant devices”. Inspired by re-
cent advances in data augmentation methods (e.g., WizardLM
[49]), we investigate the potential of leveraging powerful cloud
LLMs (e.g., GPT-4) to automatically synthesize a customized
dataset with higher quality. This approach effectively transfers
the knowledge embedded within the cloud LLM (teacher) to
the local SLM (student) through the fine-tuning process.

1) Understanding the dataset: Serving different smart
homes with diverse user groups is not a straightforward one-
input-to-one-output mapping problem, and two types of diver-
sity need to be considered: 1) Command diversity. It arises
from two main aspects: user diversity and scenario diversity.
User diversity refers to the fact that different users may express
their requests in various ways, while scenario diversity refers
to different types of home scenarios. 2) Device diversity. It
refers to the fact that different smart homes may have varying
sets of available devices, leading to multiple possible responses
for the same command.
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Vertical Synthesis

Now imagine that you are a smart 
home user. Based on these seed 
commands, please generate one 
more new under-specified user 
command of another smart home 
scenario. Make your commands 
concise and please do not give any 
other information.

(a) Vertical synthesis.

Horizontal Synthesis

Imagine you are a user command 
rewriter. For each seed command, 
rewrite it in a different speaking 
style while keeping its original 
semantic meaning. Make the new 
commands concise and do not 
give any other information.

(b) Horizontal synthesis.

Command Labeling

Let us think step by step:
• Given a command, you should 

select any possible relevant 
devices from the list: {……}.

• Format the relevant device set 
as follows: {……}.

• Compile commands with their 
device sets in this form:{……}.

(c) Command labeling (cloud).

Plan Generation

Let us think step by step:
• Given a command, you should 

select any possible relevant 
devices from the list: {……}.

• The supported home device set 
is {……}, please do matching.

• Generate an action plan using 
this relevant device set.

(d) Plan generation (local).

Fig. 4. The prompt template for (a) vertical and (b) horizontal synthesis, (c) command labeling, and (d) plan generation.

2) Command augmentation: Concerning the issue of com-
mand diversity, it is essential to construct a dataset that in-
cludes a wide range of high-quality commands across different
user groups and various scenarios. We begin this process by
manually selecting a set of under-specified commands as the
seed from crowd-sourcing platforms (e.g., IFTTT) [48] based
on their popularity, i.e., overall adoption frequency among
users. The selected commands encompass several commonly
used smart home scenarios, such as climate control and
lighting control. Each scenario contains 10 commands, and
we obtain a total of 90 seed commands.
Synthesis of new commands. Harnessing the strong genera-
tive capabilities of cloud LLMs allows us to expand the dataset
without the need for manual data collection. During each
iteration of synthesis, we randomly sample five commands
from the command pool as a starting point. Motivated by the
two aspects of command diversity, we proceed to augment the
original commands along the following two directions:
• Vertical synthesis generates new commands for different

smart home scenarios. With the sampled seed commands,
we first instruct GPT-4 to generate a new yet relevant com-
mand in a different scenario, using our carefully designed
prompts (Fig. 4(a)). With the newly obtained command, we
feed it back into GPT-4 to verify whether the command is
indeed relevant to the smart home context. If not, we discard
the command and proceed to the next iteration.

• Horizontal synthesis aims to generate new commands with
varied expression styles. Similar to the vertical synthesis
process, we instruct GPT -4 (Fig. 4(b)) to modify the ex-
pression style of the original command while preserving its
original meaning. Once generated, we add the new command
to the candidate command pool for further verification.

Similarity inspector. To ensure the quality of augmented
commands, it is necessary to remove redundant commands
with similar semantic meanings from the candidate pool.
Specifically, given any newly generated command snew, let
the set of existing commands in the command pool be S =
{s1, s2, . . . , sn}. The ROUGE-L score function, denoted as
R(s, s

′
), measures the similarity between commands. Then

the retention condition for the new command is

Retain snew ⇐⇒ max
i∈{1,2,...,n}

R(snew, si) < α (1)

where α is a predefined threshold that controls the portion of
overlap in semantic similarity between the new and existing
commands. This means that a new command will be preserved

only if the similarity between the new command and any
existing command is less than the predefined threshold.

3) Command labeling: Given the augmented command
pool, the next critical step is accurately labeling these com-
mands to construct a comprehensive command-device dataset.
We leverage the cloud LLM to label the commands with
comprehensive device sets, encompassing all potential relevant
devices. Specifically, we first simulate a virtual and large-
scale smart home deployed with a comprehensive set of COTS
devices (39 devices in total) collected from a smart home
platform [48]. With the prompt designed in Fig. 4(c), we
instruct the cloud LLM to identify a subset of relevant devices
from the comprehensive set for each user command in the
augmented dataset. The labeling process can be expressed as:

Da = {si → G(si,D)}, ∀si ∈ Sa (2)

where Da is the augmented dataset, si is a user command from
the augmented command pool Sa, D is the comprehensive
device set we build, and G(·) represents the black-box LLM.
Remarks. For the uncommon situation where a smart home
contains a device not included in the comprehensive set, the
user can explicitly suggest the missing device and specify their
preference on how to adjust it. Such explicit user feedback
will be recorded and retrieved for future reference § IV-C.
Note that the labeling process is agnostic to distinct device
configurations and does not require transmitting specific user
data to the cloud LLM.

4) Training the adapter as the device identifier: After
obtaining the tailored command-device dataset, we proceed
to fine-tune the local SLM to enhance its capabilities. Specifi-
cally, we utilize the QLoRA technique [50], a widely adopted
parameter-efficient fine-tuning (PEFT) [51] method. Instead
of fine-tuning all model parameters, which is both resource-
intensive and time-consuming, QLoRA trains a lightweight
adapter integrated into the target model. In the smart home
context, this process involves training a LoRA adapter to act
as a device identifier for the local SLM. By combining this
adapter with the original SLM, which retains extensive world
knowledge, HomeLLaMA becomes more adept at accurately
identifying and interacting with various smart devices.

5) Inference paradigm: With the enhanced SLM, we then
propose a tailored inference paradigm for serving each individ-
ual home concerning the device diversity based on Chain-of-
Thoughts (CoTs) [52]. Fig. 4(d) illustrates our designed prompt
that instructs the SLM to generate the corresponding plans in
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Plan 

Fig. 5. The designed inference paradigm of the local SLM.

a step-by-step manner. The inference paradigm can be divided
into two steps, outlined in Fig. 5:
• Initially, we consider a large home equipped with almost all

COTS devices, as mentioned before. Then, we prompt SLM
to generate a comprehensive list of relevant devices given
a command. We denote the comprehensive relevant device
set as Dl, as shown in the red box of Fig. 5.

• Then, the generated results are adapted to a specific home
by performing a matching process. Specifically, with the
available device set in home i denoted as Di, we prompt the
SLM with the instructions in Fig. 4(d) to execute the task,
matching the common devices of Dl with Di to obtain the
matched set Di

f for home i (as shown in the blue box of
Fig. 5). The matching operation via the SLM is:

Di
f = Dl ∩Di. (3)

Remarks: In the initial step, while it is feasible to directly
input the device set of a target home to generate the action
plan, this approach may result in performance degradation.
The main reason is that the local SLM is fine-tuned on our
tailored dataset with a predefined input format. Therefore, the
enhanced ability in relevant device identification may only be
activated when the prompt aligns with the expected format.

C. Multi-party Interaction
As mentioned in § III-B, the enhanced SLM may still fail to

consistently offer high-quality services in practice. To further
enhance the user experience, we propose a multi-party interac-
tion module that facilitates user feedback and consultation with
cloud LLMs when necessary. This module supports two types
of interactions: ❶ the user-assistant interaction, which allows
users to explicitly specify their requests and preferences; and
❷ the user-driven local-cloud collaboration, where the local
SLM is triggered by users to consult cloud LLMs for improved
services with enhanced privacy protection.

1) User-assistant interaction: As the core component of
HomeLLaMA, the user-assistant interaction acts as an interface
for users to express their intents. In the flowchart illustrated in
Fig. 6, upon receiving a user command, the assistant generates
action plans and responds to the user for confirmation. For
every generated response to users, they may accept, reject, or
follow up with a piece of advice.
• Accept: If the user is satisfied with the generated action

plan, the action plan will be translated into the command to
smart devices to control relevant devices.

• Advice: The user can provide natural language feedback
to further refine the user intent. For example, suppose

the user inputs a command like ”Brighten the bedroom,”
and the assistant responds with ”Turn on all the lights
in the bedroom.” If the user only wants to turn on the
bedside lamp, she can follow up with a detailed instruction
(e.g., ”Bedside lamp only, please.”). The assistant will then
regenerate the action plan by incorporating the user’s advice.

• Reject: If the user is not satisfied with the local response,
she may reject the action plan. For instance, if the user wants
to hold a home party and inputs ”Let the party begin,” but
the assistant responds with a simple action like ”Turn on
the lights and adjust the room temperature,” the user might
reject the response. In that case, the assistant leverages the
cloud LLM to generate an improved action plan with the
user-driven local–cloud collaboration module (§ IV-C2).

Remarks. Note that after each generated response, including
revised plans resulting from ”Advice” or ”Reject,” the user can
further interact with the assistant. Only when the user explicitly
”Accepts” a proposed action plan will the plan be translated
to control smart devices accordingly (Fig. 6). Subsequently,
the command and the final approved plan will be saved as
an interaction record, which will be further utilized by the
preference learning module (§ IV-D).

2) Local-cloud collaboration: When the user rejects a plan,
HomeLLaMA will ask the user for permission to consult a
cloud model (e.g., GPT-4). If approved, the assistant will
proceed with generating an improved response.
Potential privacy risks. However, directly querying the cloud
LLM via registered API calling with the raw user command
and home details may raise privacy concerns since user activ-
ities and personal information may be inferred and monitored
indirectly (e.g., through differential attacks [53]) by the curious
cloud servers. For example, suppose a user first requests, ”At 9
pm, make my living room chilly and turn on the TV,” followed
by, ”At 10 pm, check if the doors and windows are locked and
make my bedroom comfortable.” From these commands, it can
be easily inferred that the user might be watching TV from 9
pm to 10 pm and then go to bed.
Role of HomeLLaMA during collaboration. While the goal
of local–cloud collaboration is to enhance user experience, it
must not come at the cost of unacceptable privacy compro-
mises. To this end, HomeLLaMA functions as both a process-
ing center and a privacy guardian: it retains all smart home
configurations and user profiles locally, transmitting only the
current user command to the cloud for assistance. To further
mitigate potential privacy risks inherent in raw commands,
we incorporate PrivShield, a lightweight obfuscation module
designed to obscure user queries, as shown in Fig. 7.
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Fig. 7. Workflow of the PrivShield.

PrivShield. Essentially, the PrivShield operates within a SLM-
in-the-middle framework. In practice, PrivShield safeguards
user privacy through procedures including user command
rewriting, adversarial command generation, and plan recovery.

• User command rewriting. An original user command may
contain personal information (e.g., names, locations) and
many colloquial expressions (e.g., modal particles). These
components not only introduce information redundancy but
also provide opportunities for third parties to infer the user’s
actual command through continuous pattern recognition
in subsequent processes. To address this, we direct the
local SLM to first filter sensitive personal information [54],
and then paraphrase the original user command using the
customized prompt illustrated in Fig. 8(a).

• Adversarial command generation. Given a paraphrased com-
mand, the PrivShield prompts the local SLM with the
designed instructions in Fig. 8(b) to generate other N
adversarial commands across various unrelated scenarios
to obscure the original command. Each of the commands
is assigned a unique command ID and shuffled, with only
the original command’s ID t being locally recorded. These
commands are subsequently combined into a single query
along with their respective command IDs, as shown in
Fig. 8(c). The combined query will be transmitted to a cloud
LLM to generate action plans for all the commands.

• Action plan recovery. Upon receiving the response from
the cloud LLM, the PrivShield extracts the comprehensive
action plan associated with the right order. This extracted
action plan is then fed into the local assistant as advice for
generating a tailored plan for the user. The tailored plan is
subsequently delivered to the user as the updated plan.

Remarks. PrivShield enables users to access cloud services
with privacy protection in an easily understandable manner.
However, the assistant primarily operates locally whenever
possible. The reasons are twofold: 1) User profiles and home
configurations are stored locally and will not be transmitted
to the cloud for processing due to privacy concerns. 2) The
cost of constantly querying the cloud may be prohibitive.
Before deployment, users are allowed to customize the number
of adversarial commands, i.e., N , to achieve user-oriented
privacy-cost balance as discussed in § VIII.

D. User Preference Learning
Due to the restricted context length and information redun-

dancy, local SLMs cannot simply store all the chat history for
generating personalized responses. To address this challenge,
we develop a lightweight user profiling method, enabling the
assistant to efficiently retrieve a dynamically updating user
profile database for reference. In practice, the user preference
learning module operates in three key stages: user profile
generation, profile updating, and personalized plan generation.

1) User Profile Generation: The interaction records be-
tween the user and the assistant are locally recorded. A
structured prompt, as illustrated in Fig. 9(a), guides the local
SLM to digest and generate a well-organized user profile for
each conversation. These profiles include details on 1O topics
(i.e., the keywords of conversations summarized by the SLM),
2O preferences, 3O commands, and 4O final action plans in a
concise way. These profiles are then transformed into vector
representations and stored in a text embedding database E .

2) Profile Updating: The user profile database follows a
carefully designed updating mechanism to maintain its effec-
tiveness over time. When a new user profile is generated, it
is compared with all existing profiles via cosine similarity.
If the similarities between the new profile and all the existing
profiles are below a pre-defined threshold, the new profile will
be saved as a distinct entry in the database. Otherwise, it is
constructively merged with the most similar existing profile.
Specifically, given the embedding of a newly generated user
profile denoted as pn, the condition for inserting this profile
into the embedding database is determined by:

Insert pn into E ⇐⇒ max
∀pi∈E

C(pn, pi) < β (4)

where C(·) is the cosine similarity function and β is a pre-
defined similarity threshold. If the maximum cosine similarity
between pn and any existing profile pi in the database is less
than β, the new profile will be inserted as a distinct entry.
Otherwise, the two similar profiles are merged into a new,
consolidated profile, which replaces the original profile by
prompting the SLM with the prompts in Fig. 9(b).

3) Personalized Plan Generation: During the inference
stage, given a new query qi, the assistant retrieves the top-
3 user profiles in the form of text embedding (denoted as pm,
pn, and pp) that have the highest cosine similarity to the query.
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User Command Rewriting (SLM)

Please perform step by step:
• Given a user command, paraphrase 

it without any personal information 
in a formal and concise way, such as: 
Give me a cup of coffee.

• DO not change the original meaning.
• Remember to make the paraphrased 

command concise and please do not 
give any other information.

(a) User command rewriting (SLM).

Adv. Command Generation (SLM)

Please perform step by step:
• Generate other N commands which 

are unrelated to the original one.
• Make sure the generated commands 

are all user commands in the context 
of smart homes.

• Make the generated commands in a 
concise manner and do not give any 
other information.

(b) Adv. command generation (SLM).

A Query Example (LLM)

Considering the smart home scenarios, 
generate appropriate action plans with 
any possible relevant device for all user 
commands by order. Please make your 
responses  in the same format concisely:

1. Make my room chilly.
2. Tidy up the kitchen.

 …………………
10. Let the guests in.

(c) A query example (LLM).

Fig. 8. The prompt templates of the designed PrivShield.

User Profile Generation

Given new recorded conversations, generate a user profile 
that can represent the user preference. Please generate the 
profile in this format strictly:

Topic: drink, coffee
Preference: Latte
Command: I am thirsty.
Final Plan: Prepare Latte using the coffee machine.

(a) User profile generation.

User Profile Merging

There are two similar user profiles:
Compare their contents and generate a new profile to merge 
their information. Make sure the merged file in this format:

Topic: drink, coffee
Preference: Latte
Command: I am thirsty.
Final Plan: Prepare Latte using the coffee machine.

Profile 1 Profile 2

(b) User profile merging.

Fig. 9. The prompt templates for user profile generation and merging.

We then convert the selected embedding into text (denoted as
um, un, and up) through decoding:

(pm, pn, pp)
Decode−−−−→ (um, un, up) (5)

By concatenating the decoding result with the user query
qi, the personalized output plan is generated based on these
profiles and the current home configuration Hi:

Plan← L(um, un, up, Hi, qi) (6)

where L represents the action plan generation function of the
local SLM. The generated action plan is subsequently used to
control the corresponding smart devices.
Remarks: The user preference learning module can be
extended to multi-user scenarios by constructing separate
databases. During service, the assistant will first perform voice
recognition to determine the user’s identity before processing.

V. Implementation
We implement HomeLLaMA on a local server. The imple-

mentation details of each key component are as follows:
Data Augmentation: We prepare seed commands from IFTTT
and access OpenAI’s services via the OpenAI API. During the
augmentation process, we select GPT-4-Turbo as the default
LLM and appropriately prompt it to generate the required data.
By default, we set α in Equation 1 to 0.7. The augmented
dataset contains 14K action-command pairs in total, covering
9 common smart home scenarios (e.g., atmosphere adjustment,
power management, etc).
Fine-Tuning: We choose Meta-LLaMA3-8B [55] as our base
model downloaded from Hugging Face 4. To fine-tune the base

4https://huggingface.co

model with our augmented dataset, we utilize the QLoRA [50]
technique with 8-bit quantization. The rank r is set to 64 and
lora alpha to 128. The learning rate is initialized at 3×10−5,
and a dropout rate of 0.1 is applied to alleviate the over-fitting
problem. The number of fine-tuning epochs is 3, with an 80-
20 train-test split ratio. The model is fine-tuned on a server
running Ubuntu 22.04 LTS with a single NVIDIA RTX 4090
GPU, taking approximately 8 hours.
User Profile Database: We deploy and maintain the user
profile database using FAISS [56], a library for efficient
similarity search and clustering of dense vectors. The con-
versation histories collected from the interactions are saved
in the text format and summarized into user profiles. Those
well-summarized user profiles are stored in the text embedding
database and are ready to be retrieved for the generation of
personalized plans during the inference stage. By default, the
β in Equation 4 is set to 0.6.

VI. Performance Evaluation

In this section, we conduct comprehensive, quantified ex-
periments to evaluate the effectiveness of HomeLLaMA in
addressing the performance-privacy dilemma. Specifically, we
aim to answer the following questions:
• Q1 - Performance: Can HomeLLaMA provide high-quality

services locally?
• Q2 - Privacy: Does HomeLLaMA quantitatively enhance

user privacy?
• Q3 - System Overhead: Is HomeLLaMA affordable to be

deployed locally?
• Q4 - Sensitivity: How do system configurations (i.e., base

models) impact performance?
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Fig. 10. Avg. DRS after setting (a) FP16 and (b) INT8 precision.
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Fig. 11. Results for (a) latency and (b) memory usage.

A. Model Capacity (Q1)
1) DevFinder Benchmark: Considering the comprehensive

home setup described in § IV-B, which is equipped with
commonly used smart devices, we select 100 test commands
with human-annotated device labels from the IFTTT dataset
[48] with more details outlined in the open-source dataset.
These commands with labels encompass a wide range of
scenarios, including environmental control, atmosphere adjust-
ment, power management, etc. The commands are input into
the smart home assistants to generate responses, which are then
compared with the annotated labels to quantify the quality of
the generated action plans.

To quantify HomeLLaMA’s capability in identifying relevant
devices, we adopt the Device Relevance Score (DRS) as the
evaluation metric [7]. Suppose the ground truth device set is
Gl, and the device set generated by the local SLM is Gr, we
compute the relevance score as:

DRS =
|Gl ∩Gr| − |Gr −Gl|

|Gr|
(7)

where |Gl∩Gr| represents the number of overlapping devices,
and |Gr −Gl| refers to the number of devices in the response
that are not included in the ground truth. Then, the relevance
score is normalized to [−1, 1]. The higher the relevance score,
the better the performance in identifying relevant devices.

2) Baselines: To contextualize the model performance of
HomeLLaMA, we compare our system with several other
LLM-powered smart home baselines:
• HomeGPT [24] directly prompts the LLM to generate smart

home plans in response to user commands.
• Sasha [7] modifies HomeGPT by introducing a revised

pipeline consisting of five procedures, including filtering,
planning, etc, to enhance the quality of plans.

• SAGE [22] generates personalized plans by inserting all
conversation history into prompts.

• Thoughtful Things (TT) [25] utilizes the on-device SLMs
(Google Gemma-7B [57] and Microsoft Phi-2-3B [58]) to
generate routines and control smart devices.
Note that for a fair comparison, the cloud-assisted module

is disabled during the evaluation of device relevance, and all
results are computed purely based on local operations.

3) Results: We test HomeLLaMA and baselines on the
proposed DevFinder and report the average score of each
system. Additionally, we set the temperature t of these models

Prompt template for Launching Activity Monitoring Attacks

You are now playing the role of an attacker attempting to uncover users' in-home activities. You will be 
presented with a set of commands, among which only one is the true user command. Note that human-
generated commands may differ significantly from machine-generated ones. Specifically, your task is to:
• Identify user commands with the highest likelihood of being correct.
• As you gather more prompts across multiple rounds, try to recognize the patterns in user commands, 

and utilize pattern matching to improve your accuracy in the subsequent identifications.

Fig. 12. The prompt template for launching activity monitoring attacks.

to 0.1 and 0.7 for evaluation, respectively. As illustrated in
Fig. 10, the designed HomeLLaMA significantly outperforms
the other two on-device assistants but still lags behind cloud-
based LLM assistants. To investigate the reasons behind this,
we examine and analyze the generated action plans and un-
cover the following insights:
• Despite the superior performance of cloud-based assis-

tants enabled by larger models [21], HomeLLaMA achieves
comparable DRS to GPT-3.5 while ensuring user privacy
through PrivShield and local processing, demonstrating high
performance without compromising user privacy.

• Among on-device assistants, HomeLLaMA delivers the best
local service, outperforming TT-Gemma and TT-Phi-2 in
device relevance. This is due to its fine-tuning on smart
home–specific data and its hybrid design, which enables
selective cloud assistance to further boost DRS when needed.

B. Privacy Protection (Q2)

1) Qualitative risk analysis: Before quantifying HomeL-
LaMA’s privacy protection, it is important to first examine
potential privacy risks qualitatively. In typical cloud-based
smart home systems, users must register for API keys and
transmit commands and device states to remote servers, ex-
posing them to risks during data storage, network transmis-
sion, and inference, as detailed in Table II. These include
unauthorized access, interception, and inference attacks such
as PII extraction, attribute inference, and activity monitoring.
Unlike such systems, HomeLLaMA operates locally without
sharing user profiles or home configurations, thereby mitigat-
ing storage and transmission risks. Additionally, its PrivShield
module filters sensitive content before sending prompts to the
cloud, preventing PII exposure. However, obfuscated prompts
remain susceptible to activity monitoring via API traceability.
The next section presents quantitative experiments to evaluate
resilience against this residual threat.
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TABLE II
Qualitative risk analysis of LLM-based assistants including cloud-based systems, local TT, and HomeLLaMA. Here, ” ” indicates compromising

privacy regarding this threat, while ” ” signifies it requires quantitative evaluation (§ VI-B2).

Threat Type Cloud-Based Systems TT (Local) HomeLLaMA (Hybrid)

Data Storage
Network Transmission

Inference [40]
PII Extraction [59]

Attribute Inference [60]
Activity Monitoring [46]
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(d) Llama3-13B & classifier-attacker.

Fig. 13. privacy risks across query rounds and local SLMs for different N , with a GPT-based attacker from (a) to (c), and (d) a classifier-based attacker.

2) Quantitiave Analysis: We focus on examining the in-
home activity monitoring threat in HomeLLaMA. During the
use of PrivShield, the real commands are obfuscated with N
other SLM-generated adversarial commands before being sent
to the cloud LLM for processing.
Threat Model. We assume the cloud LLM operates on
the honest-but-curious remote server [31], where adversaries
deliver correct inference results but investigate all transmitted
user queries. Under our framework, the adversary’s goal is
to identify the real query from the mixture, thereby enabling
real-time monitoring of users’ in-home activities. Specifically,
following procedures in [61], we launch this activity monitor-
ing attack by using ❶ a cloud GPT-4 with prompts shown
in Fig. 12, and ❷ a well-trained text classifier [62] fine-tuned
on DevFinder, to infer the user’s true command. We then use
attack success rate [46] to assess the system’s privacy level,
where a higher rate indicates a greater threat to user privacy
and reduced system protection.
Results. We use the constructed DevFinder as test user
queries, setting the number of adversarial commands N to 2,
4, 9, and 19. We also vary the base models (Phi3, LLaMA3-
8B & 13B) to examine their impacts on the quality of ad-
versarial command generation. The attack success rates across
distinct conditions obtained through extensive experiments are
presented in Fig. 13, and we report the following findings:
• PrivShield effectively safeguards user privacy by maintain-

ing significantly lower attack success rates compared to
direct queries without its protection. As shown in Fig. 13,
with different attacker models (GPT-4 and a well-trained
classifier), leveraging PrivShield with different N values
and various base models results in a substantial reduction
in attack accuracy, far below the 100% success rate of
direct queries. Furthermore, while an increase in query
rounds allows adversaries to accumulate more information,
as illustrated in all sub-figures, this does not enhance their
ability to accurately infer user prompts. In fact, denote the

average attack success rate of the PrivShield as SRp, and
the overall attack success rate SRh should be

SRh = ϵ · SRp (8)

where ϵ represents PrivShield’s frequency of use. During
practical daily usage, the frequency ϵ will gradually become
lower with user profiles being progressively constructed, as
discussed in § VII-B. Consequently, the overall privacy pro-
tection will strengthen over time, as users will increasingly
rely on local operations without cloud assistance.

• Privacy protection strengthens as the number of adversar-
ial commands increases. These adversarial commands can
introduce noises in the text space, making it harder for
malicious attackers to identify the real queries. Moreover,
generating more adversarial commands incurs higher latency
and cost, users should be allowed to decide their preferred
trade-off between privacy and performance.

• Privacy protection also benefits from the use of stronger
SLMs. As demonstrated in figures, replacing base SLMs
with stronger models significantly reduces attack accuracy.
This is because identifying real user queries becomes
equivalent to distinguishing AI-generated text from the
mixture. Stronger SLMs are more adept at generating high-
quality adversarial commands, further obscuring the real
query from identification. However, deploying larger models
may be impractical due to resource constraints, which will
be discussed further in § VI-D.

Remarks. Although adversaries may deploy advanced pre-
trained classifiers to distinguish user commands from obfus-
cated mixtures. In such cases, PrivShield could be enhanced by
strengthening query obfuscation (e.g., selecting a larger N ) for
stronger privacy protection according to users’ requirements.

C. System Cost (Q3)
1) Metrics: We evaluate the system cost in terms of the

following aspects: 1) Response latency: We measure the time
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Fig. 14. Impacts of different base models.

cost from the moment the user inputs a command to the
generation of the final action plan as the response latency
of each system. 2) Memory usage: We measure the system
overhead by tracking the GPU memory usage (in GB) via a
Python package named memory-profiler [63] during usage.

2) Baselines: We keep the same baselines as selected in
§ VI-A2. Note that the first three systems (i.e., HomeGPT,
Sasha, and SAGE) are based on cloud LLMs, which cannot
be directly accessed, while only TT explores the integration
of SLMs into smart home assistants. Consequently, we only
measure the memory usage of TT-Gemma, TT-Phi-2, and our
proposed HomeLLaMA.

3) Results: To measure the system overhead of HomeL-
LaMA and the baselines, we input each test command in
the DevFinder benchmark into them and report the average
response latency with its variance. As shown in Fig. 11(a),
the cloud-based assistants exhibit relatively faster average re-
sponse time (around 4.97 seconds) compared to the local-based
assistants, primarily due to the performance optimizations of
OpenAI services [13]. However, cloud-LLM-based systems are
highly susceptible to network conditions and server stability,
leading to significant variance in response latencies, which can
negatively impact user experience. In contrast, HomeLLaMA
exhibits less variance in response latency, albeit with a slightly
longer response time.

We further track the maximum memory usage of the two
local SLM-based systems (i.e., TT and HomeLLaMA) when
adopting different quantization precisions (i.e., fp16, int8, and
int4) during inference. As shown in Fig. 11(b), the maximum
GPU memory requirement for these systems remains under
16 GB, which is affordable and manageable for a typical
household5. Notably, HomeLLaMA is not restricted to GPU-
only deployment: according to the literature [64], with INT8
quantization, the backbone model (e.g., LLaMA3-8B) can be
executed entirely on CPU-only platforms, with a practical
memory consumption of approximately 12–16 GB of system
RAM under a 4K-token context length, which is well within
the capability of many modern household desktops, mini-PCs,
and other devices, enabling deployment in GPU-free environ-
ments while still maintaining stable inference performance.

5An NVIDIA RTX 4070 Ti SUPER GPU (16 GB) costs around $840.
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Fig. 15. Impacts of selecting different thresholds α and β.

D. Sensitivity Analysis (Q4)
1) Different base models: We evaluate the impact of

base models by deploying Qwen2-1.5B [65], Phi3-3B [66],
LLaMA2-7B/13B [67], LLaMA3-8B [55], and LLaMA3-
70B [67] in HomeLLaMA. Given the test inputs from De-
vFinder, we record their average DRS and GPU memory
usage. As shown in Fig. 14, models fall into three groups: (1)
lightweight models (white) such as Qwen2-1.5B and Phi3-3B
offer minimal memory usage (∼8GB) but poor performance;
(2) high-end models (red) like LLaMA2-13B, LLaMA3-70B
yield the best DRS but require ≥24GB GPU memory; (3) mid-
range models (blue) such as LLaMA2-7B and LLaMA3-8B
balance performance and cost. Thus, we choose LLaMA3-8B
as the default base model.

2) Different α during augmentation: To study the effect of
the augmentation threshold α (Eq. 1), we vary it from 0.1 to
0.9 and fine-tune LLaMA3-8B, Phi3-3B, and LLaMA2-7B on
corresponding augmented datasets. As shown in Fig. 15(a), in-
creasing α improves average DRS by promoting data diversity.
However, the gain saturates at higher values, while training
cost rises due to dataset expansion. We therefore set α = 0.7
by default.

3) Different β during profile updating: The profile update
threshold β (Eq. 4) determines when to save a new user
profile. Using 10 participants, we evaluate personalization
ratings (1–5) under varying β from 0.1 to 0.9. As shown in
Fig. 15(b), higher β initially improves satisfaction by prevent-
ing premature profile merging, but overly high values lead
to redundant entries, impairing retrieval. Satisfaction peaks
around β = 0.6, which we adopt as the default.

VII. User Study
We conduct user studies to gather feedback from users. The

study can be divided into two parts: an online survey and an
onsite interview, aiming to answer those questions:
• Q5 - User Privacy Confidence: Does HomeLLaMA lift user-

perceived privacy confidence?
• Q6 - User Satisfaction: How do users feel about the overall

service quality of HomeLLaMA?
• Q7 - Long-term Personalization: Is HomeLLaMA capable

of adapting to users’ preferences continuously?

A. Online Survey: Cold-start Evaluation (Q5 & Q6)
1) Preparation works: We select two representative base-

lines: a cloud-based assistant SAGE and a local-based assistant
TT-Gemma. For each scenario, we select a test command
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•Lighting: ceiling lights, RGB strips, smart switches

•Climate & Air: thermostat, A/C controller, humidifier, purifier

•Entertainment: TVs, soundbars, speakers, displays

•Kitchen: refrigerator, oven, coffee maker, dishwasher, faucet

•Laundry & Water: washer, dryer, leak sensors

•Safety & Alarms: smoke detector, CO detector, alarm panel

•Security: door lock, doorbell cam, indoor/outdoor cameras

•Sensors & Controllers: motion, window, blind, bed, mirror

•Health & Hygiene: smart toilet, scale

•Cleaning & Pets: vacuum, pet feeder

•Communication: intercom

•Garage & Garden: garage opener, EV charger, irrigation

Fig. 16. The experimental smart home layout with 39 listed devices. Fig. 17. GUI interface for participants.

from DevFinder and input it into systems to generate initial
action plans. Subsequently, we manually select the ”Advice”
option (§ IV-C1) and provide the feedback to all systems.
These systems then perform preference learning, if applicable,
and regenerate action plans that are recorded for further
analysis. To ensure fairness, the order of system presentation
is randomized before being rated by participants.

2) Participants: We created an online survey using Mi-
crosoft Forms and distributed it via email and social media to
recruit participants. Before participating, all respondents were
presented with an informed consent form outlining the purpose
of the study, data handling procedures, and their rights as
participants. The study protocol was reviewed and approved by
our institution’s ethics review board (IRB). Participants were
informed that their responses would be anonymized and used
solely for academic research purposes. Participation was en-
tirely voluntary, and no monetary compensation was provided.
After 12 days, we received 100 responses from volunteers in
total, and the data of participants shows a relatively balanced
distribution in terms of gender, age, educational background,
English proficiency, and familiarity with smart assistants.

3) Survey design: The survey evaluated smart home sys-
tems from the following four metrics: 1O General Plan Satis-
faction, assessing satisfaction with the quality of initial action
plans irrespective of personalization; 2O User Profile Cor-
rectness, measuring how accurately the generated user profile
reflects personal preferences and behaviors during the current
interaction; 3O Personalization Fit Score, evaluating how well
the responses and recommendations align with historical feed-
back within the interaction round; and 4O Privacy Assurance
Score, gauging participants’ confidence in the system’s ability
to safeguard personal data and maintain privacy. Participants
were asked to rate these metrics on a Likert scale [68] from
1 (e.g., not at all) to 5 (e.g., completely).

4) Overall results: Fig. 18(a) visualizes the overall rat-
ing results, and key observations of each aspect include:
1) Participants expressed high satisfaction (close to cloud-
based assistant SAGE) with the quality of services provided
by HomeLLaMA, reflecting its ability to deliver effective
and reliable action plans tailored to user needs. This may
be attributed to the tailored enhancement method of SLMs
proposed in this paper. 2) HomeLLaMA excelled in delivering
personalized responses and generating precise user profiles
compared with other baselines, achieving the highest average
score of around 4.35 points. This may be attributed to the User

Preference Learning module, which accurately characterizes
well-structured user profiles to adapt plans effectively. 3)
HomeLLaMA received high ratings for its privacy-preserving
features, surpassing cloud-based solutions and approaching the
level of the fully local system, TT-Gemma. This demonstrates
its ability to enhance user-perceived privacy by operating
locally and minimizing data transmission to the cloud. Addi-
tionally, the local-cloud collaboration paradigm, supported by
the designed PrivShield, boosts users’ confidence in privacy,
thereby improving the overall usability of the system.

B. Onsite Interview: Long-term Evaluation (Q7)
To evaluate the long-term performance of HomeLLaMA, we

deployed the system locally to conduct an on-site interview,
following the implementation details outlined in § V. Specif-
ically, we implemented the local smart home assistant on the
experimental PC, along with a custom-designed graphical user
interface (GUI) (as shown in Fig. 17) that provides users with
three options: accept, reject, or request advice as introduced
in § IV-C. The smart home layout used in this on-site study is
depicted in Fig. 16, comprising a total of 39 commonly used
smart devices. The interview spanned 25 days and included
50 conversation turns, with volunteers using the system for an
average of approximately 45.6 minutes. Each turn represents a
complete user–assistant–cloud interaction (Fig. 6), beginning
with a user command and concluding with the execution of
the final action plan.

1) Procedures: We deployed HomeLLaMA on a labora-
tory PC using the configuration in § V. Of the 100 survey
respondents described in § VII-A1, 10 participants were
invited and divided into two groups: 5 experts and 5 non-
experts, based on their familiarity with smart homes. Prior
to interviews, all participants provided informed consent and
received compensation in the form of supermarket coupons
valued at approximately $10. Participants were first introduced
to the interaction workflow, including the accept, advise,
and reject options, to ensure familiarity. Additionally, two
evaluation metrics were explained to them before beginning
the interaction: 1O Long-term Personalization assesses how
effectively the system infers and retains user preferences over
time. 2O Ease of Use evaluates how efficiently the system
minimizes user efforts for delivering satisfactory responses
as usage continues. Participants were then invited to freely
interact with HomeLLaMA, issuing smart home commands in
natural language through UI without constraints. After every
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Fig. 18. User study results, including (a) online survey ratings, and (b)–(d) show average interview results.

five conversation turns, they rated the system using the two
predefined metrics on a 5-point scale. Throughout the session,
we recorded all evaluation scores and, every five turns, also
tracked the number of times PrivShield was activated for cloud
assistance. Finally, the average results for each group were
computed and analyzed separately.

2) Results: As illustrated in Fig. 18, both expert and non-
expert participants show a steady increase in ratings for
HomeLLaMA across personalization and ease of use as the
number of conversation turns grows, reflecting the system’s
ability to adapt through dynamically maintained user profiles.
Experts tend to assign higher scores earlier, likely due to
their clearer articulation of preferences, which accelerates the
quality of profiles and system adaptation. A consistent gap
remains in ease-of-use ratings, with experts maintaining an
advantage of about 0.35 points by the 50th turn, though both
groups converge above 4.2, indicating strong usability. Addi-
tionally, the activation frequency of PrivShield declines for
both groups, approaching zero by the 50th turn, highlighting
HomeLLaMA’s reduced reliance on cloud-based support as it
better internalizes user preferences, thereby enhancing privacy
protection.

VIII. Discussion

PrivShield customization. As described in the design of
PrivShield (§ IV-C2), users can customize the number of
generated adversarial commands, denoted as N , prior to de-
ployment. A larger value of N offers stronger privacy protec-
tion but also increases system overhead, including processing
latency and command token usage. To assist users in selecting
an appropriate setting, we provide three representative con-
figurations of N , i.e., N = 2, 4, 9, corresponding to low,
medium, and high levels of privacy protection. The associated
privacy risks and system costs of PrivShield for each setting
are summarized in Table III, based on average results over
100 randomly selected user commands. As shown in Table III,
while higher values of N provide stronger privacy guarantees,
they also introduce additional system overhead, with token
usage increasing from 33.2 to 374.5 and latency rising from
1.2s to 11.3s. Users are encouraged to select a privacy setting
that best aligns with their privacy needs and performance
expectations, based on the provided configuration samples.
Smart device control. This paper omits low-level device con-
trol and focuses on the action plan generation stage, where the
primary semantic privacy risk arises. In practice, major smart

TABLE III
Privacy risks and costs of Privshield in typical settings.

Metric
Setting

N = 0 N = 2 N = 4 N = 9

Privacy Risk 100% 35.6% 22.3% 11.4%
Token Usage 33.2 91.6 167.1 374.5

Latency 1.2s 3.3s 6.1s 11.3s

home ecosystems, such as Google Home6, Amazon Alexa7,
and Mi Home8, already expose official device control APIs,
allowing legitimate third-party services to control local devices
through well-defined interfaces. Therefore, HomeLLaMA is
designed as a third-party service based on a local SLM,
running entirely on local devices to perform natural language
understanding and action planning without transmitting raw
user commands to external LLM providers, which alleviates
user privacy concerns significantly.

IX. Conclusion

We present an on-device smart home assistant that strikes a
balance between user privacy and performance. HomeLLaMA
comprises three technical modules: Local SLM Enhancement,
Multi-party Interaction, and User Preference Learning, en-
abling privacy-enhanced interactions that involve user-in-the-
loop. We construct the DevFinder benchmark to evaluate
the quality of action plans generated by smart home assis-
tants. Comprehensive quantitative experiments and user studies
demonstrate that HomeLLaMA delivers satisfactory plans with
enhanced personalization and privacy protection.
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